Achieve Best Controls with Fixed Dose Combination for High Blood Pressure

> Seoul National University Hospital Cardiovascular Center Kyung Woo Park, MD, PhD

1. What is the burden of disease and why is controlling BP important?

Death by cause in the World:2008 WHO data

World	Deaths in millions	% of deaths
Ischaemic heart disease	7.25	12.8%
Stroke and other cerebrovascular disease	6.15	10.8%
Lower respiratory infections	3.46	6.1%
Chronic obstructive pulmonary disease	3.28	5.8%
Diarrhoeal diseases	2.46	4.3%
HIV/AIDS	1.78	3.1%
Trachea, bronchus, lung cancers	1.39	2.4%
Tuberculosis	1.34	2.4%
Diabetes mellitus	1.26	2.2%
Road traffic accidents	1.21	2.1%

Asian Contribution for Global Burden of CVD

50% India, China and other Asian Pacific Island countries

46

3.8 billions

60.5% world population

Asia

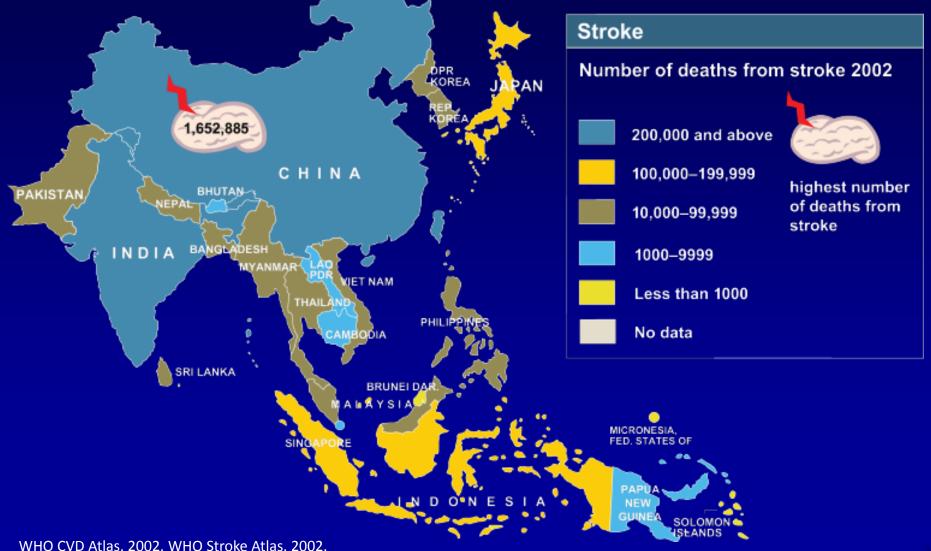
Countries:

Population:

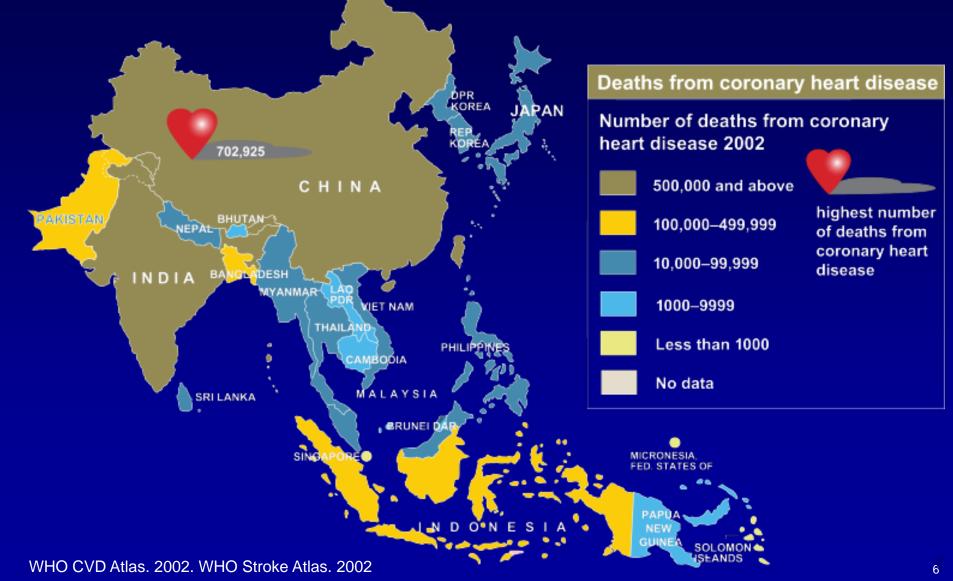
MAP INDEX

8% Middle Eastern

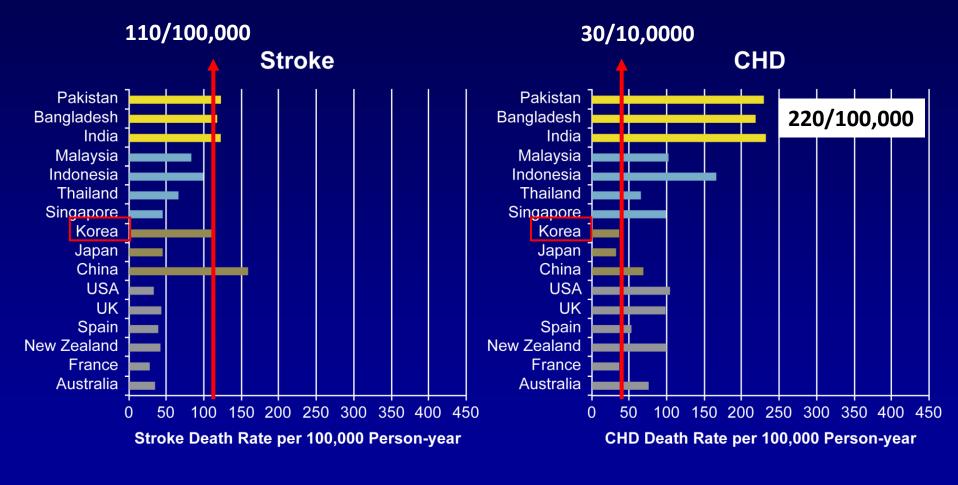
7% Latin American and Caribbean counties


> 10% Sub-Saharan Africa

14% Established market economies


8% Formerly socialist economies

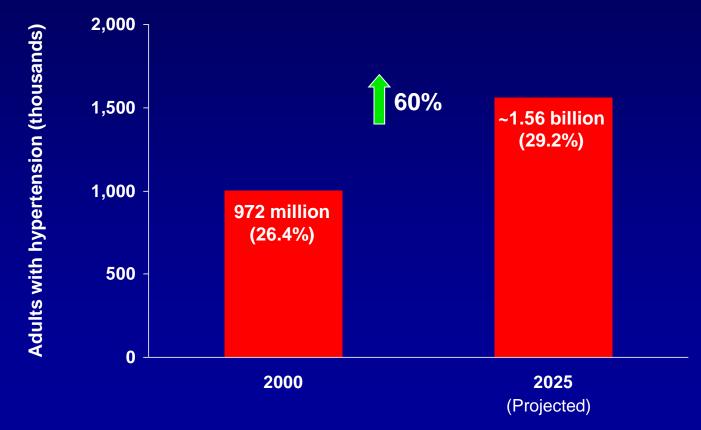
Murray C J L and Lopez D The Lancet 1997; 349:1269


The Burden of CVD in Asia: Stroke Deaths by Country, 2002

The Burden of CVD in Asia: CHD Deaths by Country, 2002

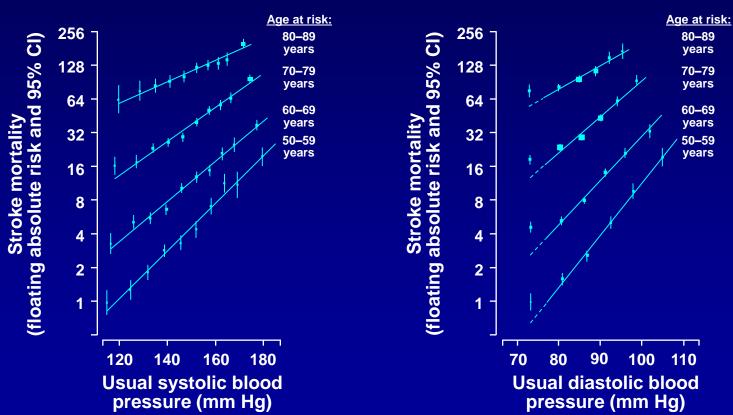
Age-Standardized Stroke and CHD Death Rates by Country, 2002

South Asian countries Southeast Asian countries East Asian countries


Two major CV risk factors in Asia: Blood pressure and Lipid

	Risk Factor	Global	Developed	Developing
			coutry	country
Ischemic Heart Disease	High Blood Pressure	45%	48%	44%
	High cholesterol	48%	57%	46%
	Obesity	18%	27%	16%
	Low fruit and vegetable intake	28%	19%	30%
	Physical inactivity	21%	21%	21%
	Smokina	17%	23%	15%
Stroke	High Blood Pressure	54%	56%	54%
	High cholesterol	16%	25%	15%
	Obesity	12%	20%	10%
	Low fruit and vegetable intake	11%	9%	11%
	Physical inactivity	7%	8%	6%
	Smoking	13%	21%	12%

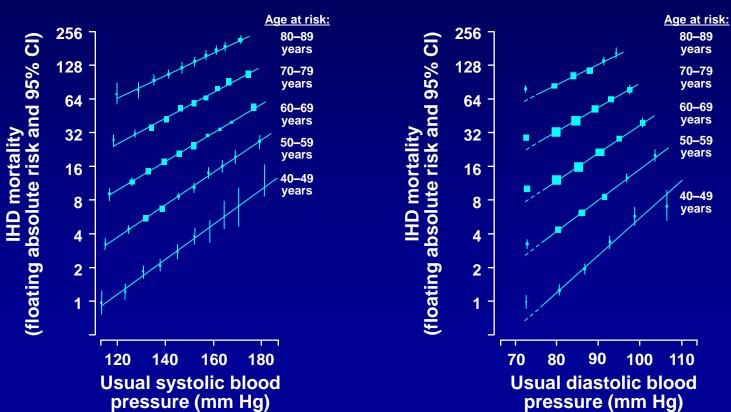
Lopez AD et al. Global burden of disease and risk factors. Washington, DC: World Bank; 2006.


Global Prevalence of Hypertension

More than a quarter of the world's adult population had hypertension in 2000, and the number of adults with hypertension is expected to increase 60% by 2025.

The Relationship of Stroke Mortality for Different Age Groups and Blood Pressure Ranges

The relationship of stroke mortality to blood pressure is strong and direct at all ages.

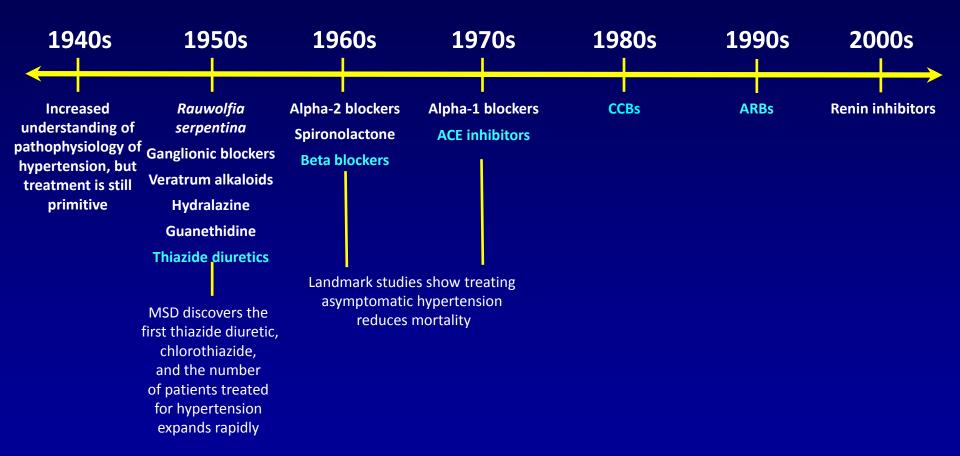

The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Chobanian AV, et al. *Hypertension*. 2003;42:1206-1252.

Systolic blood pressure

Diastolic blood pressure

The Relationship of Ischemic Heart Disease Mortality for Different Age Groups and Blood Pressure Ranges

The relationship of ischemic heart disease mortality to blood pressure is strong and direct at all ages.


The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Chobanian AV, et al. *Hypertension* 2003;42:1206-1252.

Systolic blood pressure

Diastolic blood pressure

2. What do the guidelines say about Hypertension management and Combination Therapy

History of Hypertension Knowledge and Innovation

Chobanian: AV. N Engl J Med. 2009; 361:878-887.

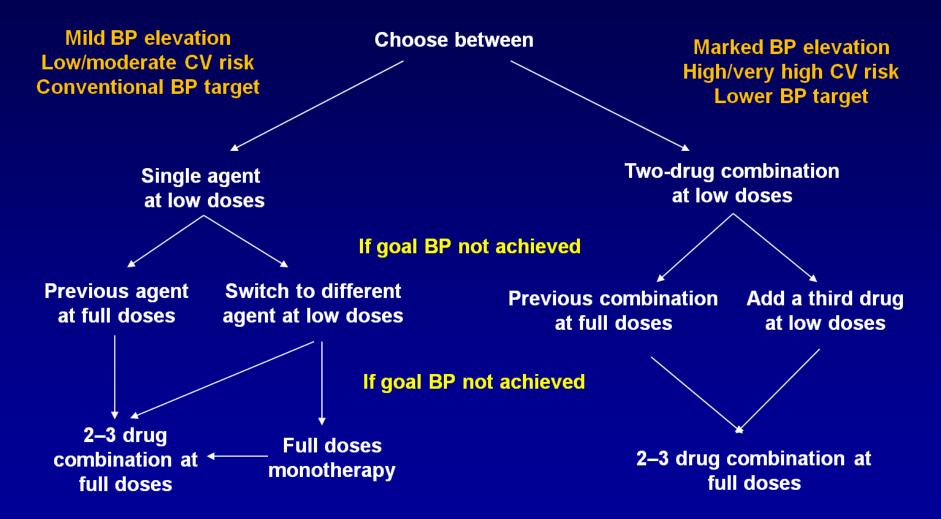
ACE = angiotensin-converting enzyme; CCB = calcium channel blocker; ARB = angiotensin II receptor blocker.

Evolution of hypertension management guideline evolution in US

ן 1977:JNC ו

1980:JNC II > DBP<90mmHg

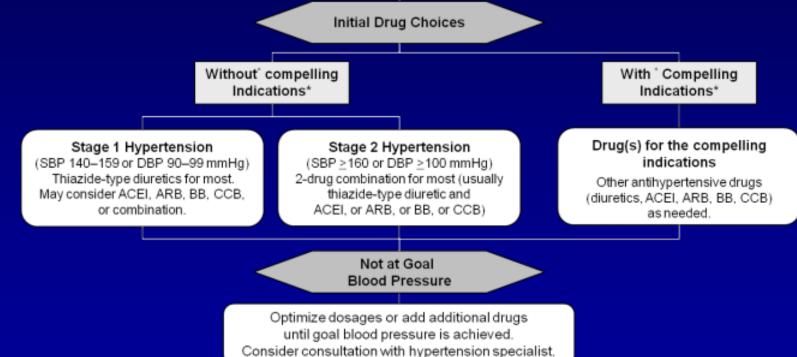
1984:JNC III


1988:JNC IV → BP<140/90mmHg

1993:JNC V → Different BP goal by baseline BP level

1997:JNC VI → Different BP goal by RFs:140/90, 130/85 or 125/75

2003:JNC VII \rightarrow Different BP goal by RFs:140/90 or 130/80


ESH/ESC 2007 Guidelines Algorithm for the Treatment of Hypertension

ESH = European Society of Hypertension; ESC = European Society of Cardiology; BP = blood pressure; CV = cardiovascular. Mancia G, et al. *J Hypertens*. 2007;25:1105-1187.

JNC 7 2003 Guidelines Algorithm for the Treatment of Hypertension

Lifestyle Modifications Not at Goal Blood Pressure (<140/90 mmHg) (<130/80 mmHg for those with diabetes or chronic kidney disease)

JNC = Joint National Committee; ACEI = angiotensin converting enzyme inhibitor; ARB = angiotensin receptor blocker; BB = beta blocker; CCB = calcium channel blocker; DBP = diastolic blood pressure; SBP = systolic blood pressure. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Chobanian AV, et al. *Hypertension* 2003;42:1206-1252.

Potential Benefits of Combining Antihypertensive Agents into a Fixed-Dose Combination

Benefit	Reason(s)
 More rapid achievement of goal blood pressure compared with monotherapy 	Greater antihypertensive efficacy
 Lower rate of adverse events 	 Action of one agent ameliorates adverse effects of the other
 Less need to modify antihypertensive regimen 	 Target blood pressure reached more quickly
Lower overall cost	 Lower prescription costs and fewer physician visits because of reduced need for regimen modification
Improved patient compliance	Simpler dosing regimen and reduced medication burden
 More effective than monotherapy, and at least as effective as free combination of same agents 	 Combination blocks more than one pathophysiologic pathway

Guideline Recommendations Regarding Initial Use of Combination Therapy

JNC 7	>20/10 mm Hg
ESH	>20/10 mm Hg OR high cardiovascular risk
АНА	SBP ≥160 mm Hg or DBP ≥100 mm Hg irrespective of the BP goals
NKF K/DOQI	SBP >20 mm Hg above goal according to the stage of CKD and CVD risk

JNC 7, Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure.

ISHIB, International Society on Hypertension in Blacks.

ESH, European Society of Hypertension.

AHA, American Heart Association.

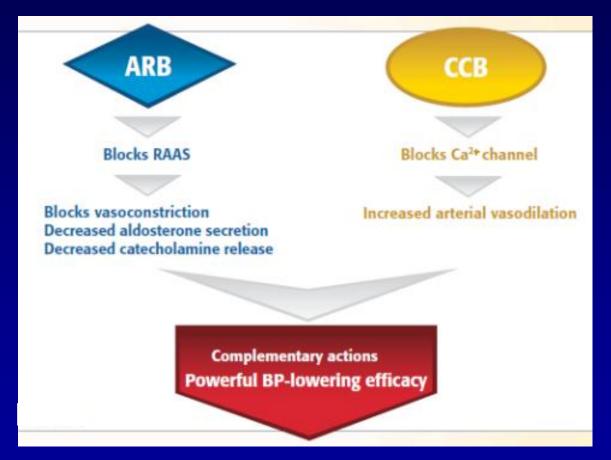
NKF K/DOQI, National Kidney Foundation Kidney Disease Outcomes Quality Initiative.

1. Chobanian AV, et al. Hypertension. 2003;42:1206-1252. 2. Douglas JG, et al. Arch Intern Med. 2003;163: 525-541.

3. K/DOQI. Am J Kidney Dis. 2004;43 (suppl 1):S65-S230. 4. Mancia G, et al. J Hypertens. 2007;25:1105-1187.

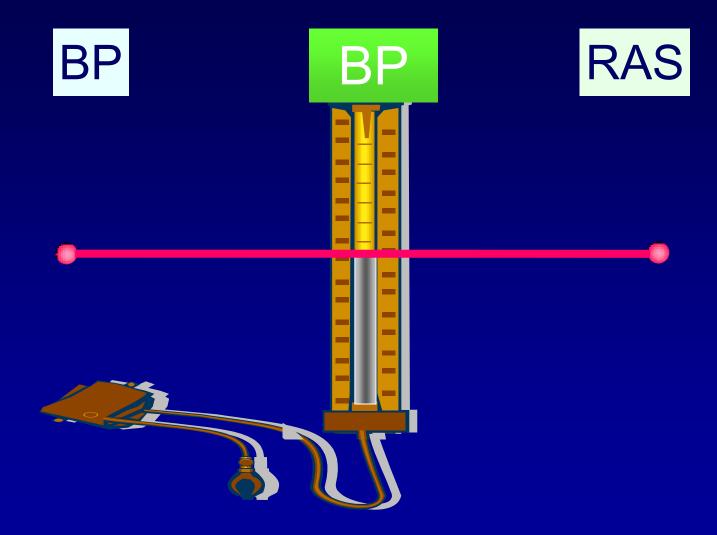
5. Rosendorff C, et al. *Circulation*. 2007;115;2761-2788.

3. What is the rationale for adding a CCB to a RAS blocker?

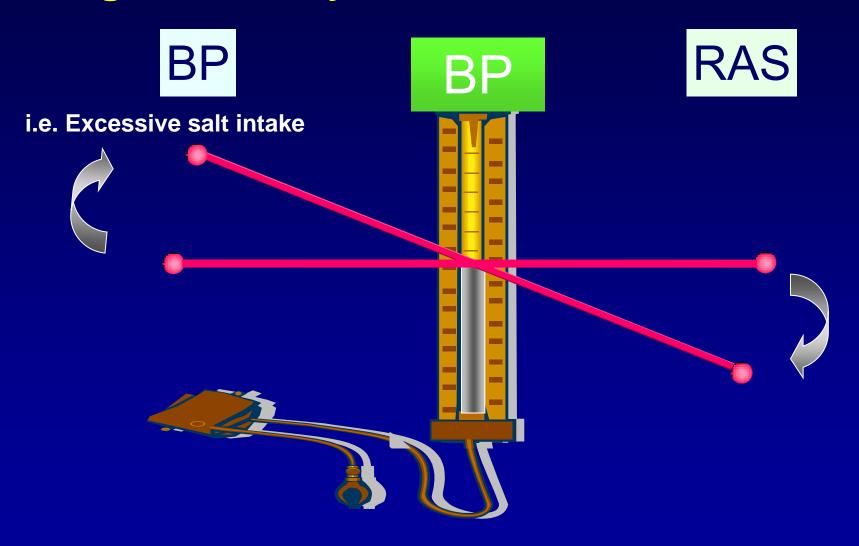

Why is a CCB Preferred to a Diuretic?

- CCB (usually amlodipine) was the most costeffective treatment option for treating hypertension unless the patient had heart failure or was at high risk of developing heart failure – i.e. older patient ≥75yrs
- CCB is metabolically neutral easy to use
- CCB is best at reducing blood pressure variability and BP variability is an independent predictor of clinical outcomes - especially stroke
- At step 2, the combination of A + C was superior to A + D at preventing clinical outcomes

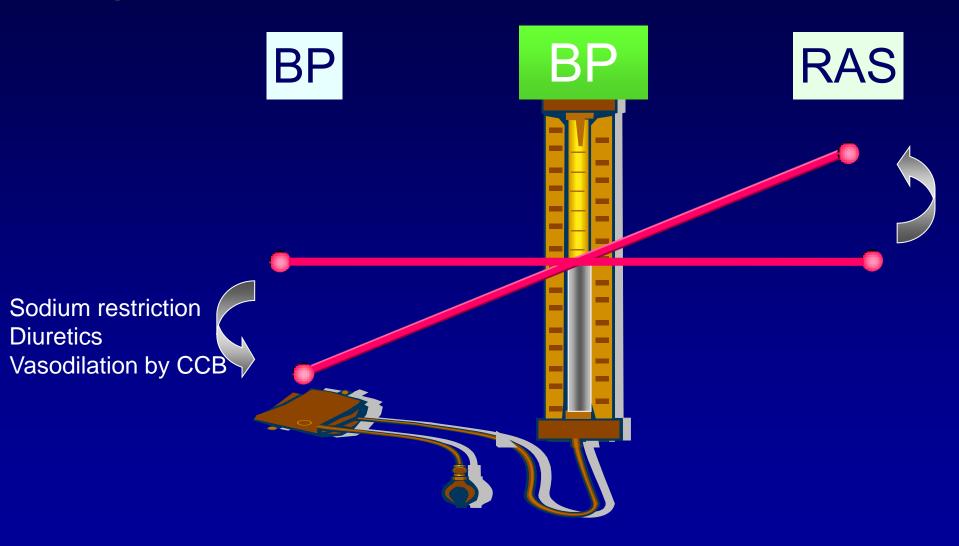
CCB = calcium channel blocker

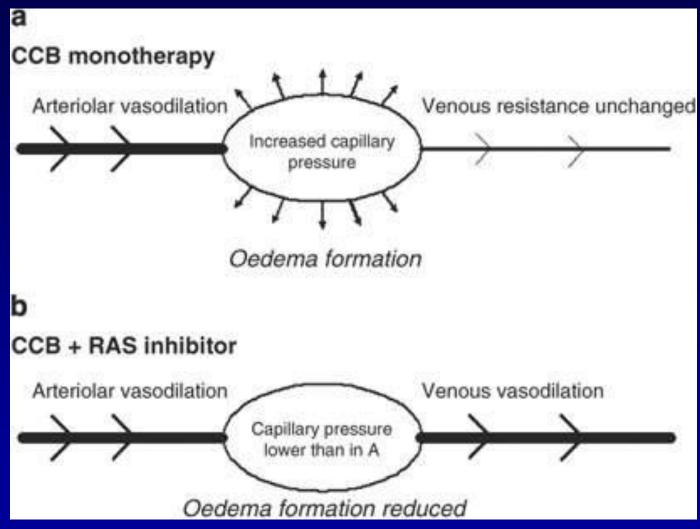

Rationale for Combination of an ARB and CCB in the Treatment of Hypertension

A powerful, complementary combination of 2 proven MOAs

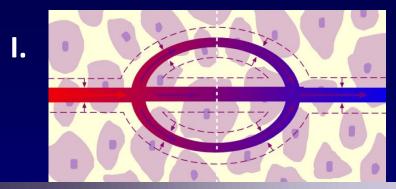


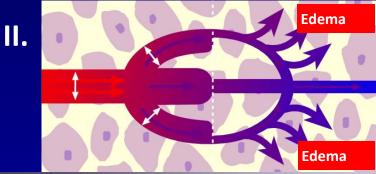
MOA=mechanism of action; ARB=angiotensin II receptor blocker; CCB=calcium channel blocker; BP=blood pressure; Ca=calcium; RAAS=renin-angiotensin-aldosterone system. Oparil S and Weber M. *Postgrad Med.* 2009;121:25-39.


Blood pressure regulation and Renin-Angiotensin System


Blood pressure regulation and Renin-Angiotensin System

Blood pressure regulation and Renin-Angiotensin System




Mitigation of CCB-related edema in hypertension by combining RAS blockers and CCB

Journal of Human Hypertension 23, 503-511 (August 2009) |doi:10.1038/jhh.2008.157

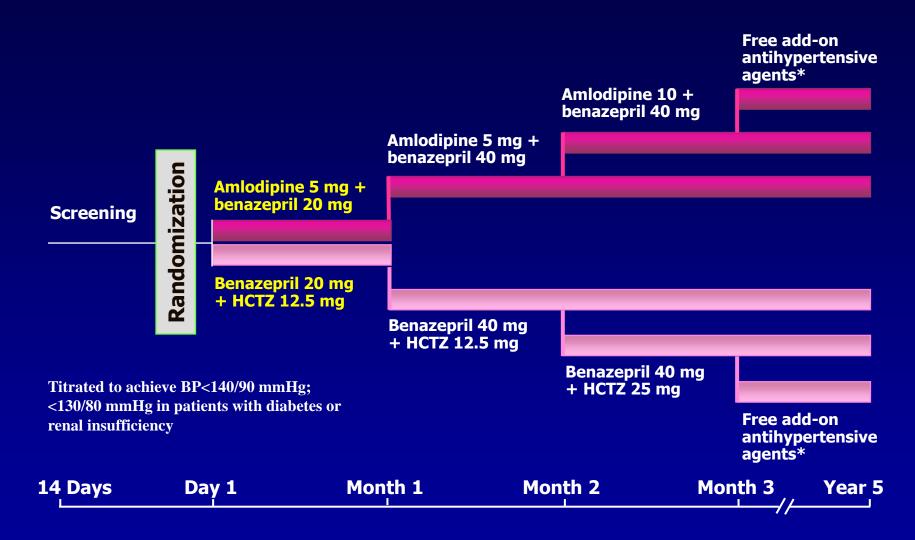
Complementary Effects of a CCB/RAS Inhibitor: Reduction of CCB-associated Edema

Arterial hypertension

• Constricted blood vessels, high resistance

CCBs

- BP reduction due to arterial vasodilation
- Tendency towards edema due to absent venodilation
- BP reduction stimulates RAS and increases Ang II level



CCBs + RAS inhibitors*

- Blockade of RAS inhibits effects of angiotensin II, giving rise to additional BP reduction
- Additional venodilation by RAS inhibitors reduces edema

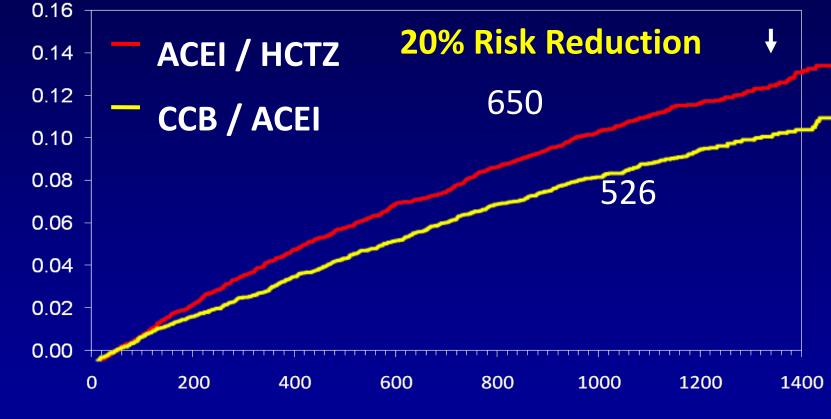
*Angiotensin receptor blockers or angiotensin-converting enzyme inhibitors

ACCOMPLISH : Design

*Beta blockers; alpha blockers; clonidine; (loop diuretics).

Jamerson KA et al. Am J Hypertens. 2003;16(part2)193A

Control Rates with Initial Combination Therapy

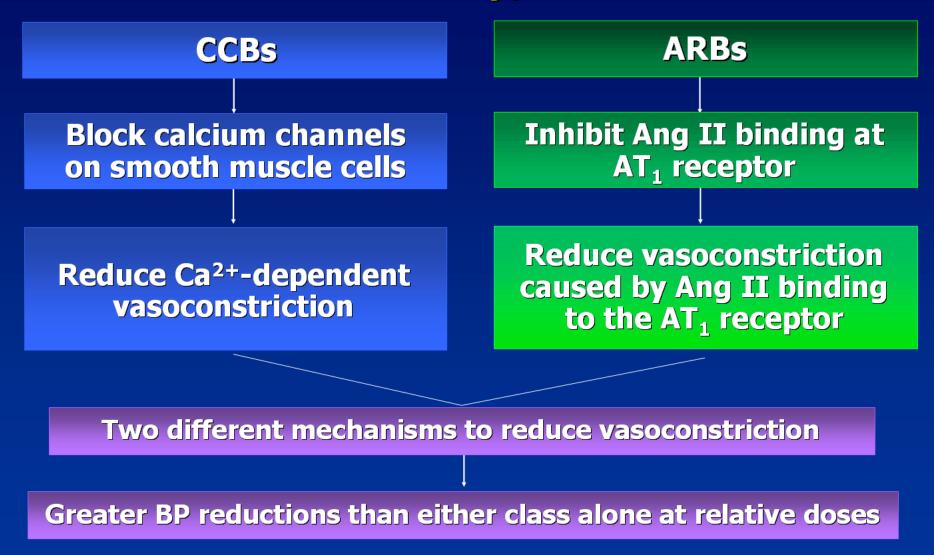


P<0.001 at 30 months follow-up

Control defined as <140/90 mmHg

ACCOMPLISH Kaplan Meier for Primary Endpoint

Cumulative event rate

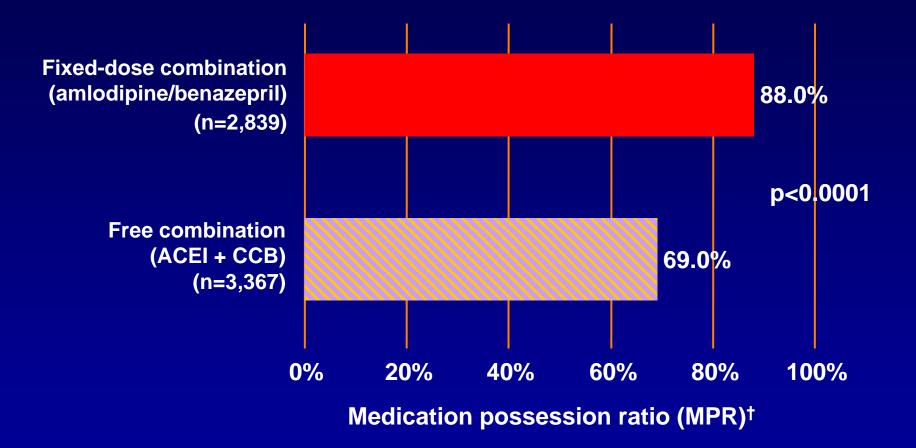


HR (95% CI): 0.80 (0.72, 0.90)

Time to 1st CV morbidity/mortality (days)

29

CCBs and ARBs: Mechanisms of Action in the Treatment of Hypertension



- 1. Berkels R et al. Cardiovasc Drug Rev. 1999;17:179–186.
- 2. Unger T. *Am J Cardiol.* 2002;89(suppl):3A–10A.

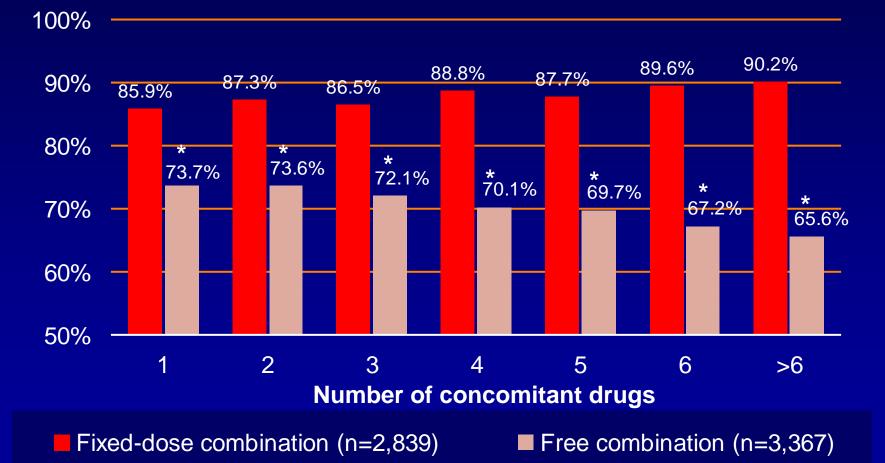
Ang II=angiotensin II

4. Is there an advantage of the Fixed Dose Combination?

Improved Compliance with Fixed-dose Combination Therapy Compared with Free-combination Therapy

[†]Defined as the total number of days of therapy for medication dispensed/365 days of study follow-up

Wanovich et al. Am J Hypertens 2004;17:223A (poster)

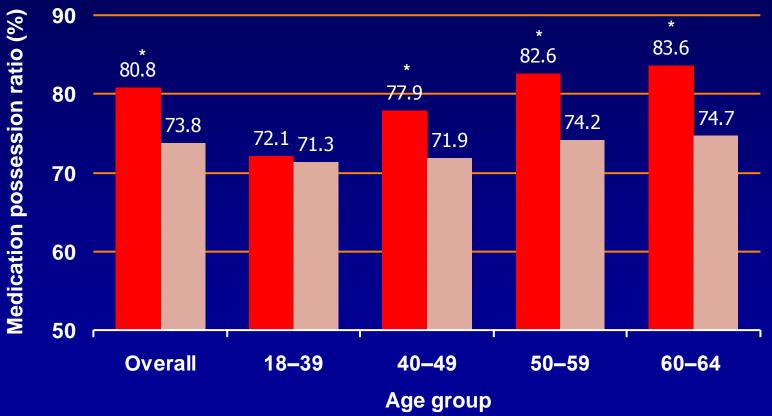

ADVANTAGES OF FIXED VERSUS FREE COMBINATIONS OF TWO ANTIHYPERTENSIVE DRUGS

	Fixed	Free
Simplicity of treatment	+	_
Compliance	+	_
Efficacy	+	+
Tolerability	+*	_
Price	+	_
Flexibility	-	+

*Lower doses generally used in fixed-dose combinations

+ = potential advantage

Fixed-dose Combinations Improve Compliance Regardless of Concomitant Medications


Medication-possession ratio

*p<0.0001

Wanovich et al. Am J Hypertens 2004;17:223A (poster)

Fixed-dose Combinations Improve Compliance Regardless of Age

FDC (amlodipine besylate/benazepril) (n=2,754)
 Component-based therapy (n=2,978)

*p<0.001

A large managed care database analysis (n=5,732)

Taylor et al. Congest Heart Fail 2003;9:324–32

5. Do we need to consider body types before prescribing anti-HTN medication?

CCB versus Diuretic (depends on body size) (sub-analysis of the ACCOMPLISH randomized controlled trial)

Dose the type of hypertension treatment affects patients' cardiovascular Outcomes according to their body size?

• Methods

-> divided obese (BMI ≥30, n=5,709), overweight (≥25 to <30, n=4,157), or normal weight (<25, n=1,616) categories</p>

-> It is compared event rates (adjusted for age, sex, diabetes, previous cardiovascular events, stroke, chronic kidney disease) for the primary endpoint of cardiovascular death or non-fatal myocardial infarction or stroke

	Obese	Overweight	Hazard ratio (95% CI)	p value
Primary endpoint	152/2822 (5%)	137/2098 7%)	0.86 (0.68–1.10)	0.2309
Cardiovascular death	47/2822 (2%)	53/2098 3%)	0.69 (0.46-1.03)	0.0729
Total myocardial infarction	66/2822 (2%)	65/2098 <mark>3</mark> %)	0.79 (0.56–1.12)	0.1894
Total stroke	51/2822 (2%)	54/2098 <mark>3</mark> %)	0.75 (0.51-1.12)	0.1583
	Overweight	Normal	Hazard ratio (95% CI)	p value
Primary endpoint	137/2098 (7%)	75/825 (9%)	— ———————————————————————————————————	0.0163
Cardiovascular death	53/2098 (3%)	34/825 (4%)	0.57 (0.37–0.89)	0.0125
Total myocardial infarction	65/2098 (3%)	28/825 (3 <mark>6</mark>)	0.88 (0.56-1.38)	0.5784
Total stroke	54/2098 (3%)	28/825 (3 <mark>6</mark>)	0.79 (0.50-1.25)	0.3152
	Obese	Normal	Hazard ratio (95% CI)	p value
Primary endpoint	152/2822 (5%)	75/825 (9%)	0.61 (0.46-0.81)	0.0008
Cardiovascular death	47/2822 (2%)	34/825 (4 <mark>%</mark>)	0.40 (0.25-0.63)	<0.0001
Total myocardial infarction	66/2822 (2%)	28/825 (3%)	0.70 (0.44-1.10)	0.1207
Total stroke	51/2822 (2%)	28/825 (3 <mark>%</mark>)	• 0.60 (0.37-0.96)	0.0335
		0.25		

Which outcome comes from ACEI + CCB? Now what you think?

Pr Ca

Total myocardial infarction	67/2887 (2%)	44/2059 (2%)		•		>	1.06 (0.72–1.57)	0.7593
Total stroke	52/2887 (2%)	43/2059 (2%)					0.89 (0.59–1.34)	0.5714
	Overweight	Normal					Hazard ratio (95% CI)	p value
Primary endpoint	103/2059 (5%)	43/791 (5%)				-	0.97 (0.68–1.39)	0.8630
Cardiovascular death	38/2059 (2%)	21/791 (3%)	 •				0.70 (0.41–1.21)	0.2025
Total myocardial infarction	44/2059 (2%)	14/791 (2%)			•		1·23 (0·67–2·26)	0.5003
Total stroke	43/2059 (2%)	17/791 (2%)		•		- →	1.07 (0.61–1.89)	0.8083
	Obese	Normal					Hazard ratio (95% CI)	p value
Primary endpoint	Obese 142/2887 (5%)	Normal 43/791 (5%)	 	•			Hazard ratio (95% Cl) 0.96 (0.67–1.36)	p value 0.8120
Primary endpoint Cardiovascular death			•	•			. ,	·
<i>,</i>	142/2887 (5%)	43/791 (5%)	 •	•			0.96 (0.67–1.36)	0.8120
Cardiovascular death	142/2887 (5%) 48/2887 (2%)	43/791 (5%) 21/791 (3%)	 •	•	-		0·96 (0·67–1·36) 0·68 (0·40–1·15)	0.8120 0.1481
Cardiovascular death Total myocardial infarction	142/2887 (5%) 48/2887 (2%) 67/2887 (2%)	43/791 (5%) 21/791 (3%) 14/791 (2%)	 	• 1.00		1.50	0.96 (0.67–1.36) 0.68 (0.40–1.15) 1.31 (0.73–2.37) 0.95 (0.54–1.67)	0.8120 0.1481 0.3709

Comparison of event rates within obese, overweight, and normal weight categories

	Benazepril and amlodipine	Benazepril and hydrochlorothiazide	Hazard ratio p value (95% CI)
Obese			
Primary endpoint	142/2887 (5%)	152/2822 (5%)	0.89 (0.71-1.12) 0.3189
Cardiovascular death	48/2887 (2%)	47/2822 (2%)	0.97 (0.65-1.45) 0.8844
Total myocardial infarction	67/2887 (2%)	66/2822 (2%)	0.97 (0.68–1.36) 0.8426
Total stroke	52/2887 (2%)	51/2822 (2%)	0.99 (0.67–1.46) 0.9541
Overweight			
Primary endpoint	103/2059 (5%)	137/2098 (7%)	0.76 (0.59–0.94) 0.0369
Cardiovascular death	38/2059 (2%)	53/2098 (3%)	0.73 (0.48-1.11) 0.1372
Total myocardial infarction	44/2059 (2%)	65/2098 (3%)	0.69 (0.47-1.00) 0.0522
Total stroke	43/2059 (2%)	54/2098 (3%)	0.81 (0.54-1.21) 0.2953
Normal			
Primary endpoint	43/791 (5%)	75/825 (9%)	0.57 (0.39–0.84) 0.0037
Cardiovascular death	21/791 (3%)	34/825 (4%)	0.62 (0.36-1.07) 0.0853
Total myocardial infarction	14/791 (2%)	28/825 (3%) —	0.50 (0.26-0.96) 0.0364
Total stroke	17/791 (2%)	28/825 (3%)	0.60 (0.33-1.11) 0.1025
		0.25	0.50 0.75 1.00 1.25 1.50
		0.25	0.50 0.75 1.00 1.25 1.50
			Favours benazepril Favours benazepril and amlodipine and hydrochlorothiazide

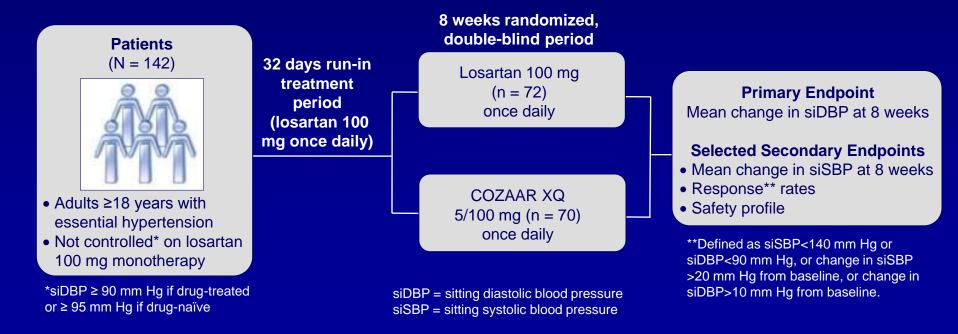
Do we need to consider body types before prescribe a medication?

Thiazide-based treatment gives less cardiovascular protection in normal weight than obese patients, but amlodipine based therapy is equally effective across BMI subgroups and thus offers superior cardiovascular protection in non-obese hypertension.

(sub-analysis of the ACCOMPLISH randomized controlled trial)

6. What are the clinical efficacy data for COZAAR XQ[™]?

(Amlodipine Camsylate and Losartan Potassium) A Fixed-Dose Combination Therapy for Hypertension


COZAAR XQ: Uncontrolled on Losartan 100 mg* Study Design

• Objective

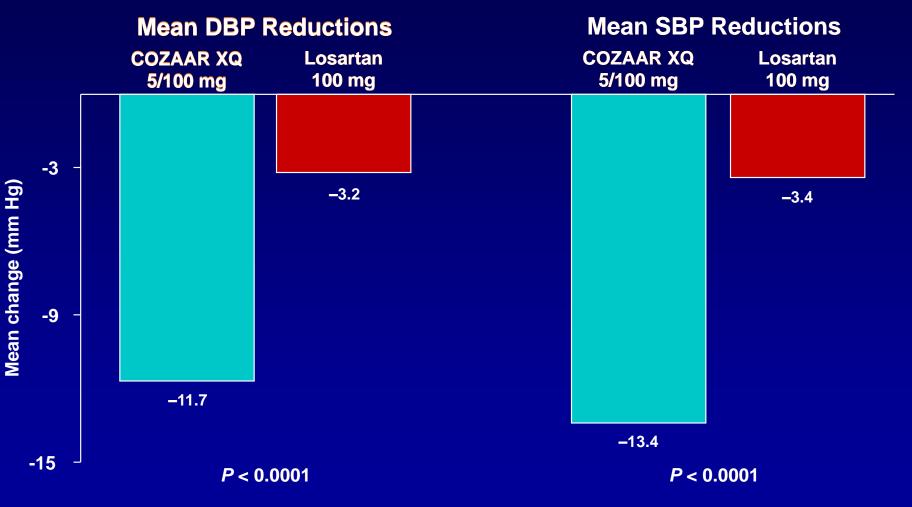
 Evaluate the efficacy and safety of COZAAR XQ 5/100 mg vs. losartan 100 mg in patients with essential hypertension inadequately controlled on losartan 100 mg

Study Design

– 8-week, multicenter, randomized, double-blind phase III clinical study

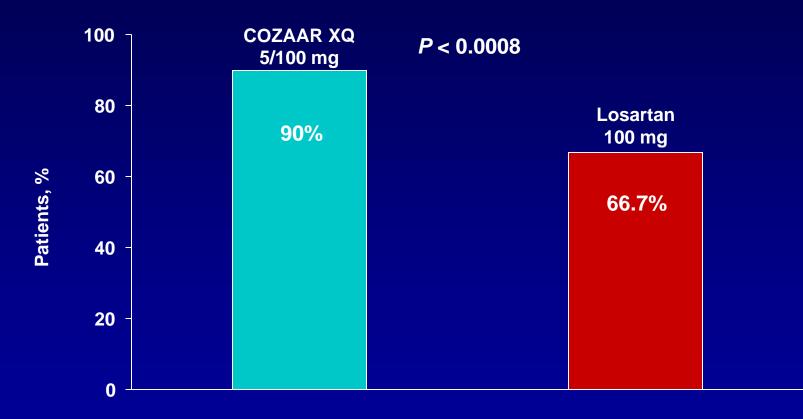
COZAAR XQ: Uncontrolled on Losartan 100 mg Inclusion and Exclusion Criteria

Selected Inclusion Criteria


- Patients 18 years of age or older with essential hypertension (DBP ≥ 90 mm Hg if drug-treated or ≥ 95 mm Hg if drug-naïve).
- Non-responders to 4 weeks of treatment with losartan 100 mg monotherapy (sitting DBP≥ 90).

• Selected Exclusion Criteria

- Secondary hypertension
- A difference in sitting systolic BP measurements ≥20 mm Hg or diastolic BP ≥10 mm Hg between the highest and lowest measurements after 3 measurements
- Known hypersensitivity to dihydropyridine CCBs or ARBs
- Mean sitting SBP ≥ 200 mm Hg or mean sitting DBP ≥ 120 mm Hg at screening and mean siSBP ≥ 180 mm Hg or mean sitting DBP ≥ 120 mm Hg after 4 weeks of losartan potassium 100 mg treatment.
- Clinically significant renal, metabolic, or hepatic disease
- Severe heart disease or severe neurovascular disease
- Uncontrolled diabetes mellitus
- Pregnant or nursing women


COZAAR XQ: Uncontrolled on Losartan 100 mg Mean Reductions in DBP (Primary Endpoint) and SBP

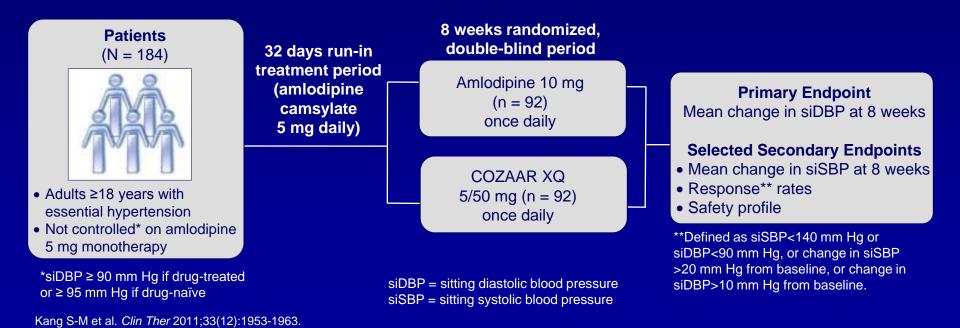
Mean BP Reductions at 8 weeks (N=142)

COZAAR XQ: Uncontrolled on Losartan 100 mg Additional Efficacy Results

Blood Pressure Response Rates*

*The rate of patients who achieved any of the following predefined targets: 1) systolic BP <140 mm Hg or diastolic BP <90 mm Hg, 2) a reduction in systolic BP >20 mm Hg from baseline, or 3) a reduction in diastolic BP >10 mm Hg from baseline.

Reference : 1. Hong BK, et al. Am J Cardiovasc Drugs. 2012;12(3):189-195.


COZAAR XQ: Uncontrolled on Losartan 100 mg Safety Profile Results (After Randomization)

	COZAAR XQ 5/100 mg (n=70)	Losartan 100 mg (n=72)	P value
Subjects with AEs	21 (30.0%)	16 (22.2%)	0.2911
Number of AEs	25	25	
Number of serious AEs	0	1 (1.4%)	0.2306
Severity of AEs			
Mild	19 (27.1%)	15 (20.8%)	0.5294
Moderate	2 (2.9%)	1 (1.4%)	
Severe	0	0	
AEs leading to discontinuation	1 (1.4%)	0	0.4930
Drug-related AEs	5 (7.1%)	9 (12.5%)	0.2844
Deaths	0	0	

Reference : 1. Hong BK, et al. Am J Cardiovasc Drugs. 2012;12(3):189-195.

COZAAR XQ: Uncontrolled on Amlodipine 5 mg* Study Design

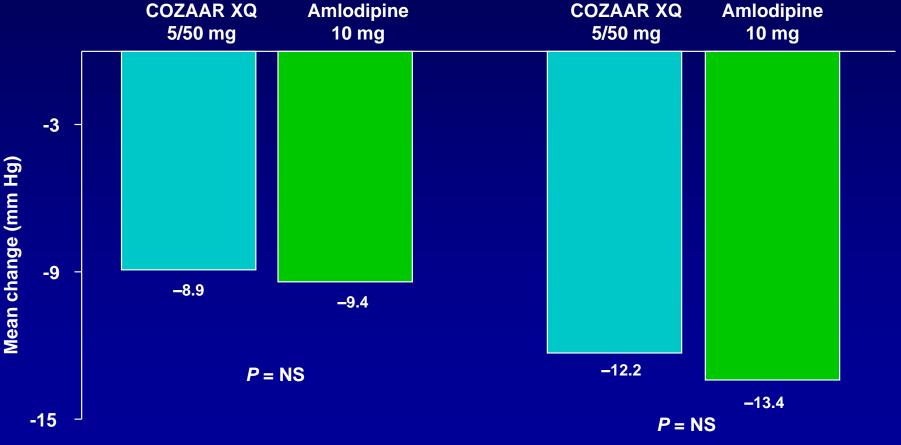
- Objective
 - Compared the efficacy and safety of COZAAR XQ 5/50 mg to amlodipine 10 mg in patients with essential hypertension inadequately controlled on amlodipine 5 mg
- Study Design
 - 8-week, multicenter, randomized, double-blind phase III clinical study

COZAAR XQ: Uncontrolled on Amlodipine 5 mg Inclusion and Exclusion Criteria

Selected Inclusion Criteria

- Adults aged 18 or older with essential hypertension with uncontrolled essential hypertension [a sitting DBP ≥90 mm Hg in drug-treated patients and ≥95 mm Hg in drug-naïve patients]
- Non-responders to 4 weeks of treatment with open-label amlodipine 5 mg monotherapy (DBP ≥90 mm Hg)

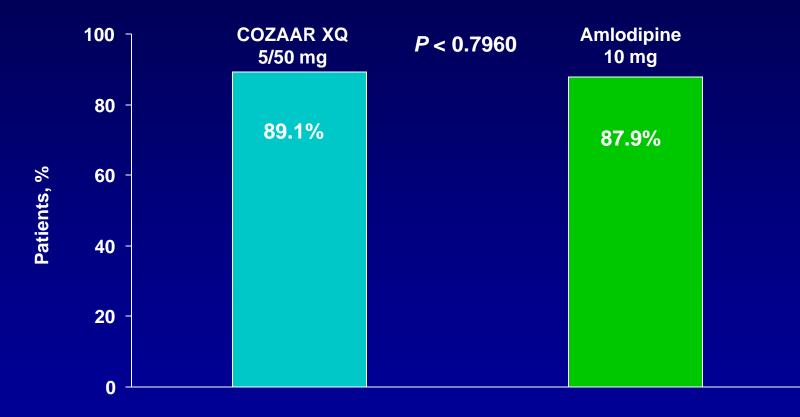
Selected Exclusion Criteria


- Secondary hypertension
- A difference in sitting systolic BP measurements ≥20 mm Hg or diastolic BP
 ≥10 mm Hg between the highest and lowest measurements after 3 measurements
- Known hypersensitivity to dihydropyridine CCBs or ARBs
- Mean sitting SBP ≥ 200 mm Hg or mean sitting DBP ≥ 120 mm Hg at screening and mean siSBP ≥ 180 mm Hg or mean sitting DBP ≥ 120 mm Hg after 4 weeks of amlodipine 5 mg treatment.
- Clinically significant renal, metabolic, or hepatic disease
- Severe heart disease or severe neurovascular disease
- Uncontrolled diabetes mellitus
- Pregnant or nursing women

COZAAR XQ: Uncontrolled on Amlodipine 5 mg Mean Reductions in DBP (Primary Endpoint) and SBP

Mean BP Reductions at 8 weeks (N=183)

Mean DBP Reductions


Mean SBP Reductions

Kang S-M et al. Clin Ther 2011;33(12):1953-1963.

COZAAR XQ: Uncontrolled on Amlodipine 5 mg Additional Efficacy Results

Blood Pressure Response Rates*

*The rate of patients who achieved any of the following predefined targets: 1) systolic BP <140 mm Hg or diastolic BP <90 mm Hg, 2) a reduction in systolic BP >20 mm Hg from baseline, or 3) a reduction in diastolic BP >10 mm Hg from baseline.

Kang S-M et al. Clin Ther 2011;33(12):1953-1963.

COZAAR XQ: Uncontrolled on Amlodipine 5 mg Safety Profile Results

	COZAAR XQ 5/50 mg (n=92)	Amlodipine 10 mg (n=92)	P value
Subjects with AEs	20 (21.7%)	24 (26.1%)	0.49
Number of AEs	38	31	-
Number of serious AEs	1 (1.1%)	1 (1.1%)	1.00
Severity of AEs			0.6907
Mild	15 (16.3%)	21 (22.8%)	
Moderate	3 (3.3%)	2 (2.2%)	
Severe	2 (2.2%)	1 (1.1%)	
AEs leading to discontinuation	0	2 (2.2%)	0.50
Drug-related AEs	6 (6.5%)	10 (10.9%)	0.30
Deaths	0	0	

Kang S-M et al. Clin Ther 2011;33(12):1953-1963.

Summary

- The burden of CV disease is huge. Hypertension management is key in reducing risk of mortality from CV diseases.
- The guidelines advocate use of combination agents to more effectively reduce BP.
- CCB + RAS blockade combination showed superior outcome compared with Diuretics + RAS blockade in the ACCOMPLISH trial
- CCB + RAS blockade is effective for BP control irrespective of Body Mass Index (BMI).
- FDC improves compliance to medication, enhances BP lowering effects and reduces potential side effects

Summary

- COZAAR XQ has been shown to be effective in patients with hypertension:
 - Whose BP was uncontrolled with amlodipine 5 mg
 - \rightarrow COZAAR XQ 5/50 mg
 - Whose BP was uncontrolled with losartan 100 mg
 - \rightarrow COZAAR XQ 5/100 mg
- In controlled clinical trials, <1% of patients taking COZAAR XQ reported peripheral edema